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Abstract. The predictive performance of machine learning models tends
to deteriorate in the presence of class imbalance. Multiple strategies
have been proposed to address this issue. A popular strategy consists
of oversampling the minority class. Classic approaches such as SMOTE
utilize techniques like nearest neighbor search and linear interpolation,
which can pose difficulties when dealing with datasets that have a large
number of dimensions and intricate data distributions. As a way to
create synthetic examples in the minority class, Generative Adversarial
Networks (GANs) have been suggested as an alternative technique due
to their ability to simulate complex data distributions. However, most
GAN-based oversampling methods tend to ignore data uncertainty. In
this paper, we propose a novel GAN-based oversampling method using
evidence theory. An auxiliary evidential classifier is incorporated in the
GAN architecture in order to guide the training process of the generative
model. The objective is to push GAN to generate minority objects at the
borderline of the minority class, near difficult-to-classify objects. Through
extensive analysis, we demonstrate that the proposed approach provides
better performance, compared to other popular methods.

Keywords: Imbalanced classification · Generative models · Oversampling
· Dempster-Shafer theory

1 Introduction

Unequal amount of data in different classes can cause many issues with classification
performance. Due to this imbalance, conventional classifiers tend to focus on
the majority class and overlook the minority class. However, this latter can
often contain important information that needs to be carefully analyzed in real-
world scenarios, such as intrusion detection [9], medical diagnosis [22], fraud
detection [2], and satellite data analysis [7]. This machine learning problem
attracted significant interest [12], investigating the question of how to make
learning algorithms acquire unbiased knowledge from imbalanced data. Most
models face difficulty distinguishing minority classes and often treat them as
”noise” in comparison to majority classes when the training data is heavily biased
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towards one or a few classes. The problem gets more difficult by the fact that
standard measures like accuracy can be deceptive in assessing the model. For
instance, if a model simply assigns the majority class to all samples, it may still
have a high accuracy score when the class distribution is heavily imbalanced.

Different methodologies have been proposed to address this issue. Mainly,
the leading approaches are resampling, cost-sensitive algorithms, and ensemble
methods. Resampling generally consists of oversampling the minority class by
adding synthetic data, or undersampling the majority class by removing data.
Oversampling is one of the most proven methods for handling class imbalance [12].
Other than random oversampling (randomly selecting and replicating minority
data), the Synthetic Minority Oversampling Technique (SMOTE) [6] is a classic
oversampling choice. The SMOTE technique firstly selects at random a minority
object and a nearest neighbor example from the minority class at random. An
important limitation of this method is the fact that it only considers the minority
class, which means that the relationship between the minority class and the
majority class is overlooked. This makes this method inefficient in many scenarios,
especially when there are other data difficulties in the dataset, such as high
uncertainty (such as class overlapping and noise).

To address this drawback, many SMOTE-based variants have been suggested
over the years. BorderlineSMOTE [15] and ADASYN [16] are very similar to
SMOTE, but with control over the locations of generated minority examples.
More recently, other methods based on SMOTE paired with undersampling
tackled class overlapping problem in imbalanced data [14, 19]. However, most
SMOTE-based techniques are based on non-parametric models such as the k-
nearest neighbors (k-NN) [8], which makes them not very efficient when dealing
with high dimensional and complex datasets.

More recently, Generative Adversarial Networks (GANs) [13] have emerged
as a type of deep generative model, which goal is to reconstruct the real
data distribution and generate a synthetic one. GANs have been used as an
oversampling method to generate minority class instances, in order to rebalance
the data. Although the majority of GAN studies concentrate on unstructured,
continuous data like images and text, most classification datasets in real-world
business situations consist of tabular data (numerical and categorical data). Very
few proposals have addressed this type of data in GAN-based oversampling
literature [11]. Some works use unorthodox strategies to deal with tabular data,
such us converting it into two-dimensional in order to be processed by 2d-
convolutions [28], which is not always the best solution [11]. Other than types
of data, most GAN-based oversampling methods are developed to generate
data without taking into account the uncertainty present in the data. The class
imbalance issue have been proven to get worse in the presence of ambiguity [14,35].
Thus, it is important for GAN-based oversampling to generate data near the
borderline of the minority and majority classes. This aspect holds significant
importance as it helps address the challenge of imbalanced datasets by focusing on
the regions where the minority class is particularly vulnerable (high uncertainty).
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In this paper, we propose an evidential GAN-based oversampling method,
that can enhance the robustness of the minority class borders, by generating
boundary samples. The theory of Evidence [32] was used to guide the training of
our GAN, in order to simulate the distribution of boundary minority objects. The
intuition is to introduce highly uncertain data in the minority, for the purpose of
empowering the difficult-to-classify objects. This is done by modifying the GAN
architecture by adding an auxiliary evidential component to feed uncertainty
information to the generator. To incorporate auxiliary knowledge and guide
the training of the GAN, two regularization terms are introduced into the loss
function. These regularization terms serve the purpose of leveraging additional
information to enhance the learning process. A mechanism is also implemented in
order to effectively model tabular data with numerical and categorical features.

The remainder of this paper will be divided as follows. Firstly, we will present
some background information for GANs and theory of evidence in Section 2.
Section 3 presents our proposal, detailing each step. Experimental evaluation
and discussion are conducted in Section 4. Our paper ends with a conclusion and
an outlook on future work in Section 5.

2 Preliminaries

Before introducing our approach, we firstly present some necessary background
information.

2.1 Generative Adversarial Networks (GANs)

GANs [13] are composed of two neural networks that work against each other. One
of these networks is the generator G, which maps a low-dimensional latent space
to a high-dimensional sample space of x. The second network is the discriminator
D, which acts as a binary classifier to distinguish real inputs from fake inputs
generated by the generator G. The generator and discriminator are trained in an
alternating manner to minimize the following min-max loss:

min
G

max
D

L(D,G) = Ex∼preal

[
log(D(x))

]
+ Ez∼pz

[
log(1−D(G(z)))

]
(1)

where z is the noise input to G, usually following a normal distribution pz, and x
is an example from the real dataset preal. The objective functions of discriminator
D and generator G are as follows:

LD = Ex[log(D(x))] + Ez[log(1−D(G(z)))] (2)

LG = Ez[log(D(G(z)))] (3)
Conditional GAN (cGAN) [24] extended the vanilla version by allowing the
conditioning of G and D. For example, one can add a class condition to the input
of the generator, to ensure that the generated objects belong to the chosen class.
At the same time, the condition helps the discriminator to make more informed
predictions.
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Although successful, GANs are known to be difficult to train, which is a
phenomenon called mode collapse. Indeed, GANs aim to generate a variety of
outputs, but if a generator produces a highly plausible output, it may learn to
produce only that output. If the discriminator consistently rejects that output, the
generator may get stuck producing a small set of similar outputs. Among many
approaches addressing this issue, Fisher GAN [26] is a type of GAN that uses the
Fisher distance as the metric to measure the distance between the distributions
of the generated and real data. It modifies the objective function of the GAN
by replacing the discriminator with the score function of the generator, and
minimizing the Fisher distance between the generated and real data distributions.
This leads to more stable training and reduces the risk of mode collapse, compared
to traditional GANs. In this paper, a conditional version of Fisher GAN will be
used, with the condition being on the minority class.

2.2 Evidential uncertainty quantification

The theory of evidence [10,32,33], also known as Dempster-Shafer theory (DST) or
belief function theory, provides a robust and adaptable framework to represent and
merge uncertain information. Let Ω = {w1, w2, ..., wK} be a frame of discernment
composed of a finite set of K distinct possible events, such as the various labels
that can be assigned to an object during classification. A mass function refers to
the level of belief expressed by a source of evidence. This can apply to any subset
of the frame of discernment, including the whole frame itself (ignorance state). A
particular formalism of the evidence theory by Subjective Logic [17] was used
recently as a framework to quantify uncertainty of a neural network [31]. Formally,
let K be the number of mutually exclusive singletons with a non-negative belief
mass bK , and overall uncertainty u (belief assigned to the whole frame). More
formally:

u+

K∑
k=1

bk = 1 (4)

In other words, bk is interpreted as the belief mass for the k-th class, whereas u
is the total uncertainty mass. Moreover, let ek ≥ 0 be the evidence derived for
the k-th singleton. The belief bK and the uncertainty u are computed as:

bk =
ek
S

and u =
K

S
(5)

where S =
∑K

k=1(ek+1). In [31], the term evidence is a measure from the amount
of support collected from data in favor of a sample to be classified into a particular
class. Following subjective logic, a belief mass function can be described by a
Dirichlet distribution with parameters αk = ek+1. In other words, one can derive
a belief mass function easily from the parameters of a Dirichlet distribution using
bk = (αk−1)

S , where S =
∑K

k=1(ek + 1). Hence, the total uncertainty over whole
frame u can also be derived.

A typical neural network classifier produces a probability distribution for each
sample over the possible classes, using a softmax output layer in most cases. On
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the other hand, in [31], the authors model the output of a neural network as
evidence for a Dirichlet distribution. Let yi be a one-hot vector encoding the
class of observation xi with yij = 1 and yik = 0 for all k 6= j, and pij is the
probability that xi belongs to the class j, calculated as pij =

αij

K . Finally, the
evidential neural network can be trained by minimizing the total MSE loss:

L(Θ) =

N∑
i=1

K∑
j=1

(y2ij−2yij E[pij ]+E[p2ij ])+KL[D(pi|α̂i)||D(pi| 〈1, 1, . . . , 1〉)] (6)

where N is the number of training examples. KL is the Kullback-Leibler divergence
loss between the Dirichlet distribution of the sample in question with predicted
parameters α̂i, and the equivalent of a uniform probability distribution, which is
a Dirichlet distribution whose all parameters αij with j = 1, 2, . . . ,K are equal
to 1, and u = 1 (total ignorance).

In this work, we adopt the evidential model as a means to acquire valuable
information regarding the generated objects of GANs. By incorporating this
evidential model, we guide and enhance the training process, enabling us to gain
deeper insights into the quality of the generated data.

3 EvGAN: Evidential Generative Adversarial Networks

The architecture of EvGAN, depicted in Figure 1, resembles the original GAN, but
with the addition of an auxiliary component. The use of auxiliary information to
guide GAN training is a common practice [20,27]. For our method, we employ the
evidential neural network (EvNet) [31] described in Section 2.2 as the uncertainty
estimator within the GAN architecture. The EvNet is designed to avoid over-
confidence in classifying difficult-to-classify objects. Through the KL divergence
term in Eq. 6, the evidential model converges to the uniform Dirichlet distribution
for misclassified samples. In our case, our goal is to generate objects with high
uncertainty that are close to the majority class, that is, a uniform distribution.
Therefore, to encourage a conditional GAN to generate samples at the borders
of the minority class, we suggest pre-training EvNet on the original data to
learn about its distribution. The guided training of GAN is then incorporated by
introducing two additional regularization terms, in GAN’s loss function. The goal
is to ensure the predictive distribution of generated samples has high uncertainty,
by acquiring auxiliary knowledge.

3.1 Modified loss function

As discussed previously in Section 2.1, Fisher GAN’s objective function was used
as base in this paper. The reason behind this choice, is to prevent the issue of
mode collapse, as explained previously. The generator’s loss function LG is our
only interest in the objective function.

Although the standard GAN model is successful in generating samples from a
distribution, it lacks a mechanism to control the specific location of a generated



6 F. Grina et al.

Generator

Real data
Evidential
uncertainty

estimation network

Discriminator
generated

data

Real

Fake

Pre-training evidential NN

GAN's training

Fig. 1: Overall architecture of EvGAN

output sample based on a given input sample. Consequently, it is not explicitly
designed to generate samples with the aim of enhancing imbalanced classification
performance.

The introduction of the regularizing loss functions described below allows us
to achieve this goal.

KL divergence evidential loss Similarly to the regularization term in EvNet
(see Eq. 6), we add a regularization loss function to the generator’s loss LG, called
the evidential loss, defined as:

λv ·KL[D(pi|α̂i)||D(pi| 〈1, 1, . . . , 1〉)] (7)

In this equation, D(pi|α̂i) represents the Dirichlet distribution predicted by
the auxiliary evidential neural network (EvNet) for a generated sample xi from
the generator G. On the other hand, D(pi| 〈1, 1, . . . , 1〉) denotes the uniform
Dirichlet distribution, where all parameters are equal to 1. The hyperparameter
λv > 0 determines the importance of this regularization term.

The purpose of this regularization term is to encourage the GAN to generate
samples that are closer to the uniform distribution. By doing so, it promotes the
creation of high-uncertainty minority samples. However, it is important to note
that this term has the potential to generate noise or outliers that are far from
both classes.

To address this concern, we introduce an additional regularization term that
mitigates the generation of such undesired samples.

Noise regularization term In many GAN-based approaches, the generator’s
input is commonly generated from random noise sampled from a latent noise
space, often a Gaussian distribution. However, we propose an alternative approach
where we feed random real instances from the majority class directly into the
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(b) After EvGAN oversampling

Fig. 2: A toy imbalanced dataset; yellow points represent the majority class, blue
points are the minority one, and the red points are EvGAN-generated.

generator’s input. This enables us to incorporate real majority data as additional
knowledge within the generator’s loss.

To achieve this, we introduce the squared L2 norm to quantify the distance
between the input (randomly selected majority data denoted as z) and the
generated output (denoted as G(z)). This additional term is incorporated into
the generator’s loss function. Mathematically, the following term is included in
the generator’s loss:

λz ·
∥∥z −G(z, y)

∥∥2 (8)

where λz > 0 represents a weighting coefficient that determines the significance
of the L2 norm term, and y represents the condition label (minority class). By
employing this modification, we aim to leverage the information contained in
real majority data as an auxiliary component for the generator’s training process.
The generator will try to minimize this loss, by generating points that are closer
to the majority class. Thus, this will complement the evidential term, by ensuring
that the highly uncertain objects belong in the space between the majority and
minority classes, and not far from both classes, as illustrated in Figure 2.

3.2 Networks’ settings

Most research literature on GANs focuses on utilizing image or sequence data,
leading to the prevalent use of Convolutional Neural Networks (CNN) [34] or
Recurrent Neural Networks (RNN) [23] in the architectures of the generator
and discriminator. In contrast, since we focus on tabular datasets in this paper,
feed-forward neural networks (FNN) aligns better with our problem. Therefore,
we propose utilizing feed-forward neural networks as the core architecture for
our generator, discriminator and evidential models.

Multilayer FNNs are able to learn complex feature interactions. Nevertheless,
they might fail to efficiently learn cross feature interactions and discrete features.
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Inspired by the work in [25], we propose to set up our networks similarly.
Cross layers [36] are added to G, D, and EvNet. This type of layers provides
an effective way to model feature interactions by multiplying different input
dimensions and learning their relationships. This allows the GAN to capture
complex dependencies and correlations among features, improving its ability to
generate more diverse and realistic outputs. Through the stacking of N cross
layers, we can efficiently calculate feature interactions of up to N degrees in an
automated manner. All neural networks are composed of fully connected layers
and cross layers.

The generator G employs Leaky ReLU activations for all layers except the
last one. The final layer uses a Sigmoid activation for numerical features and
Softmax activations for categorical features, with one Softmax activation per
feature. Consequently, G is capable of generating distributions for the categorical
values of each discrete feature.

Consequently the discriminator D will receive either one-hot encoding vectors
from real data, or Softmax distributions for the generated data. Continuous
features remain the same for both real and generated data. There is not special
processing done for continuous data. However, the distributions of categorical
features are transformed into compact, lower-dimensional representations using
embeddings. D also uses Leaky Relu activations in all but the last layer, which
consists of a dense layer with a sigmoid function.

The network structure of the EvNet model is the same as that of D, except
for the final layer. Instead of the original configuration, the EvNet’s last layer
includes a softmax layer with two outputs, corresponding to the parameters of
the evidence which will be used to create Dirichlet distribution’s parameters.

4 Experimental study

Having presented our proposed methodology in the preceding section, we now
proceed to empirically assess its effectiveness on real-world datasets in this section.
Additionally, we compare its performance with that of other baseline methods.

4.1 Experimental setup

Datasets In order to demonstrate the effectiveness by our approach, we conduct
experiments 5 binary real-world datasets from UCI3 [1] and Kaggle4: Online
Shoppers Purchasing Intention (shopping), Adult, Bank Marketing (bank), Coil2000,
and the data mining competition pakdd2010. The details of each dataset are
summarized in Table 1, where we describe the number of samples, the number of
features for each type, and the class distributions. All five tabular datasets have
a binary target variable, for which we use the rest of the variables to perform
classification. All of the datasets consist of columns that include both numerical
3 http://archive.ics.uci.edu/ml/datasets
4 https://www.kaggle.com/competitions/pakdd2010-dataset
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and categorical data, underscoring the significance of explicitly considering
categorical variables in our approach. To handle missing values, we substitute
them with the most commonly occurring value in categorical columns, while
numerical columns are assigned the average value of the respective feature.

Table 1: Characteristics of Datasets
Dataset #Instances Categorical features Numerical features Class Distribution

coil2000 9000 25 60 15.76
shopping 12330 8 10 5.5
adult 32561 9 5 3.15
bank 45211 9 6 7.55
pakdd10 46223 27 9 3

Evaluation procedure and metrics To address the inherent imbalance in the
benchmarking datasets, we employ a stratified 10-fold cross-validation approach
in our evaluation process. We specifically choose a 10-fold setup because GAN-
based oversampling techniques often exhibit steep learning curves and require
large training sets. In each fold of the cross-validation, we apply oversampling
to achieve a balanced parity with a 50:50 ratio. Consistent partitioning of the
data is maintained across all oversampling methods to ensure equal difficulty
comparisons. To ensure consistency across all methods, we apply min-max scaling
to normalize the numerical features within the range of [0, 1]. On the other
hand, for handling categorical features, we employ a straightforward approach of
one-hot encoding.

Subsequently, we employ a Random Forest classifier [5] to train the model
using the resampled dataset. Predictions are then generated using the remaining
10% of the data. To evaluate the performance of each method, we rely on two
widely used metrics for imbalanced classification: the Area Under the ROC curve
(AUC) [4] score and the Geometric Mean (G-Mean) [3]. These measures provide
valuable insights into the effectiveness of the methods in addressing the challenges
posed by imbalanced datasets.

Compared methods and Parameters In addition to baseline (no resampling),
three benchmark approaches were used for the experiments: SMOTE [6], Borderline
SMOTE (B-SMOTE) [15], and the Conditional vanilla GAN (cGAN) [24]. The
network configurations for EvGAN are provided in Section 3.2. When using the
conditional GAN (cGAN), we adopt similar network settings to our approach,
with the exception of excluding cross layers and embeddings in the discriminator.
During the training process, we employ the vanilla GAN loss for cGAN.

To find the best regularization coefficients (λv and λz) for our approach, we
perform hyper-parameter tuning using the grid search methodology. This is done
on a small validation set for each dataset, allowing us to determine the optimal
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values. The training process for EvGAN and cGAN adheres to the conventional
procedure, with employing the Adam optimization method [18], a commonly
used algorithm, with a fixed learning rate of 10−4. As for the other methods
we compare against, such as SMOTE and B-SMOTE, we utilize their default
parameters.

Implementation The code of our proposal, written in Python 3.9, can be
openly found on Github5. The implementation uses PyTorch [29] version 2.0.1.
The Imbalanced-learn package [21] version 0.11 was used for implementations
of benchmark oversampling algorithms and the Scikit-learn package [30] version
1.2.2 was used for supervised learning algorithms and metrics.

4.2 Results discussion

In this section, we present a comprehensive analysis of our method’s performance
in comparison to other algorithms. The results are displayed in Table 2, showcasing
the average G-Mean and AUC scores obtained using a 10-fold stratified cross-
validation approach. The best average score is highlighted in bold for easy
identification. Notably, when using the Random Forest classifier, our EvGAN
method outperformed other algorithms in 4 out of 5 datasets, demonstrating
superior performance in both the G-Mean metric and the AUC.

Furthermore, the results highlight the effectiveness of our method in datasets
with a large number of categorical features. For datasets like shopping, adult, and
pakdd10, regardless of the metric used, EvGAN consistently delivered the best
performance. These datasets have more than 10k instances, with pakdd10 being
the largest dataset with 27 categorical features. This demonstrates our method’s
ability to handle complex datasets and effectively capture relationships between
features through our architecture.

The selected metrics, G-Mean and AUC, consider the accuracy of both classes.
G-Mean takes into account the true negative rate (specificity) and the true
positive rate (sensitivity), while AUC provides a comprehensive measure of
overall performance. Thus, we can confidently state that our EvGAN method
improves learning on the minority class while maintaining accuracy for the
majority class.

5 Conclusion

In this paper, we introduce an innovative oversampling method called evidential
GAN, which focuses on strengthening the boundaries of the minority class by
generating boundary samples. We leverage the theory of Evidence to guide the
training of our GAN, simulating the distribution of minority objects near the
boundaries by adding two regularization terms to the generator’s loss function.
Our approach involves modifying the GAN architecture by incorporating an
5 https://github.com/faresGr/code-evidential-gan
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Table 2: AUC and G-Mean results for chosen datasets using the random forest
classifier

AUC G-Mean

Datasets None SMOTE B-SMOTE cGAN EvGAN None SMOTE B-SMOTE cGAN EvGAN

shopping 0.756 0.809 0.814 0.759 0.836 0.726 0.800 0.806 0.729 0.814
bank 0.691 0.709 0.705 0.716 0.724 0.631 0.692 0.656 0.635 0.679
adult 0.769 0.769 0.772 0.769 0.772 0.757 0.769 0.752 0.752 0.780
coil2000 0.525 0.536 0.543 0.525 0.532 0.258 0.314 0.335 0.258 0.453
pakdd10 0.514 0.520 0.518 0.513 0.537 0.216 0.262 0.255 0.214 0.314

auxiliary evidential component to incorporate uncertainty information into the
generator. Additionally, we implement a mechanism to effectively handle tabular
data with both numerical and categorical features. The proposed method aims
to improve the robustness and performance of GAN-based oversampling for
imbalanced datasets.

Finally, the research conducted on benchmark datasets confirmed the effectiveness
of the proposed solution. Our experimental study demonstrates that integrating
uncertainty quantification by evidence theory into, could result in better robustness
of the minority class, which improves the learning performance. Further investigations
can include applying our framework to generate minority class data in more
complex distributions such unstructured data, i.e., images and time series.
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